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Summary. We review combined molecular dynamics (MD) and density functional 
(DF) simulations and their applicability in chemistry and physics. This method 
(also termed ab initio MD, "first principles" MD or "Car-Parrinello" method) 
exhibits characteristic strengths and weaknesses, and we demonstrate both in a set 
of typical example applications from molecular physics (phosphorus clusters) and 
soild state physics/chemistry (liquid phosphorus). Dynamical, finite temperature, 
simulations deriving interatomic forces from state-of-the-art density functional 
calculations represent a substantial advance over both (i) traditional pointwise 
total energy and electronic band structure calculations and (ii) classical MD 
simulations with empirical or semi-empirical forces, and have already yielded 
qualitatively new insights in several fields. 
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1 Introduction 

The calculation of structures and properties of molecules, solids and liquids has 
experienced a decade-long steep upwards development with two separate land- 
mark developments: 

Molecular dynamics (MD) [1], the numerical solution of the classical (e.g. 
Newton's) equations of motion (EOM) of an N-particle system with finite differ- 
ence methods. MD, much like the related Monte Carlo (MC) method, can perform 
the task of computing macroscopic quantities based on atomistic simulations and 
providing a direct view of structure and dynamics in the microscopic world of 
complex systems. 

Density functional theory, a variational method originally from solid state phys- 
ics [2] for the solution of the ground state problem of n electrons interacting with 
one another and with N nuclei that is now rapidly gaining ground also in the 
quantum chemistry community [3]. 

Both fields suffer from a set of characteristic drawbacks when viewed in isolation: 

MD can treat large numbers of particles (up to 10 7) at finite termperatures but 
relies on an a priori qualitative and quantitative knowledge of the interaction 
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between the particles. Although this approach has provided much important 
qualitative insight into the structure and dynamics of, e.g. liquids and polymers, it 
often fails when covalent chemical bonding comes into play and when specific 
materials properties rather than universal ones are sought° 

Density funcational methods, like other first principles solid state physics and 
quantum chemistry methods, can treat complex chemical bonds with high pre- 
cision, and with no input other than the type of atoms in the material. These 
methods, however, were long confined to point-by-point calculations for a small 
number of highly symmetric isomers or crystal structures, with small numbers 
of symmetry-nonequivalent particles (2-30) because of the high computational 
demand. 

In this paper, we review an important development unifying MD (Sect. 2) and 
DF methodology (Sect. 3) proposed by Car and Parrinello 1985 1,4]. We briefly 
describe the "ab initio Molecular Dynamics" method (Sect. 4, detailed reviews can 
be found in I-5-8]), give an account of the computational machinery and demands, 
and present two representative applications (Sect. 5): (i) Small clusters of phos- 
phorus atoms P2-xl and (ii) the molecular-polymeric phase transition in liquid 
phosphorus. 

2 Molecular dynamics 

I n  MD one follows the "trajectory" F(t) of a system of N particles (atoms, 
molecules, etc.), i.e. the evolution in time of the particle velocities and positions 
{R~(t)}, {R~(t)}. Rt(t) denotes the coordinates of particle I in space. Basic statistical 
theory teaches that quantities (A)timo computed as time averages over the trajecto- 
ries correspond to ensemble averages of physical "observables" 

(A}tim e lim 1 I '  1 (A),ns = - A ( r ( ~ ) )  d r , ~  - A ( r ( e ) ) .  (1) 
~--~ t JO "~ ~=0  

Except for a small number of unrealistic model systems the trajectories F(t) of 
the colliding particles cannot be calculated analytically, and one has to resort to 
numerical methods to solve the equations of motion (EOM) 

Ft(t) = Mzilz(t) = - VR, U({R,(t)}), (2) 

F~(t) is the force (vector) acting on particle I with mass mt  at time t and U({R~(t)}) 
the (scalar) potential energy of the particles at t, i.e. the sum of interaction 
energies between all particles at this instant. Equation (2) is a system of 3N 
coupled ordinary, nonlinear, 2nd order differential equations, and must be solved 
iteratively by discretization in the independent time variable t, symbolically 
t = 0 ~ t + A t - ,  t + 2A t -~ ..- - ,  tend. Equation (2) is also an initial value problem 
where one starts from some set of initial conditions {/~t(t = 0)}, {R1(t = 0)}. The 
most obvious algorithm to use is also the most widely used, the so-called (third- 
order) Verlet algorithm 

At 2 
R(t + At) = 2g(t) - g(t  - At) + --~-F(t) + O(At4). (3) 

It becomes clear immediately that even with the largest computing resources one 
needs to confine oneself to modeling a relatively modest number of interacting 
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particles over a finite period of time tc~d. Most MD simulations proceed by filling 
microscopically small boxes ("MD unit cells") with anywhere from 50 to 107 
particles and following their motion for 103-107 time steps At. These are still 
minute periods of "real" time (picosecond to nanosecond range), and one basic 
difficulty of MD simulations is that even on the fastest available computers physics 
happens in extreme slow motion ( ~ 1015-17 times slower than reality). 

It is somewhat less obvious that the feasibility of the calculation hinges on the 
ease with which the interaction energy U({RI(t)}) can be computed since this has to 
be done in every step of the calculation. For that reason, simple pairwise additive 
short-range interactions of the type 

U({Rz}) = ~ u([R, - RjI) (4) 
I < J  

are most widely used. This type of potential is a good representation for a few 
interesting systems (e.g. interacting rare-gas atoms) but generally fails when 
covalent chemical bonds play an important role. The basic reason is that chemical 
interactions are not pairwise additive but are instead governed by the complex 
electronic structure of the participating atoms. All attempts to model the - 
fundamentally quantum mechanical - chemical many-body forces between atoms 
with parametrized models for U({RI}) have so far been blessed with little suc- 
cess. For lack of knowledge, one has to solve - in principle - the full quantum 
mechanical Schr5dinger equation 

9::T({R,(O}), (ri}) = U({R,(t)}) ~({R,(t)}), {r,}) (5) 

with n electrons i in space positions rl ... r~ o.. rn. g is the total quantum- 
mechanical Hamiltonian operator. Incorporating those additional electronic de- 
grees of freedom increases the computational demand vastly, and we will have to 
approximate the full Schr6dinger equation and simplify the solution. 

3 Density functional theory 

The density functional formalism [2] shows that a knowledge of the electron 
density, n(r), is sufficient to determine the total energy and other ground state 
properties of a system of electrons in a potential field, V~xt(r)o In the absence of 
other fields this is the Coulomb field Vext(r , {RI}) of the N nuclei at {Rt}. The 
ground state energy, Egs, can be found by minimizing the relationship between 
energy and density, E[n], and this minimum is found for the ground state density, 
ns, o It is convenient to write the density functional total energy 

UDrr = E[n] = To In] + f d r  n(r)(Vcxt(r) + ½ 4~(r)) + Ex¢[n] + Eio,-ion, (6) 

where To is the kinetic energy which a system with density n would have in the 
absence of electron-electron interactions, ~(r) is the classical Coulomb potential 
for electrons, and Exo is the exchange-correlation energy. We adopt the widely used 

LSD LSD approximation Ex¢ = ~dr n(r) e~c In(r)], and for the sake of completeness we 
already added the internuclear repulsion term Eton-ion({Rt}). 

For a given set of atomic coordinates {RI}, Eion-io~ is constant and the 
minimization of E[n] in Eq. (6) is usually performed by solving the Kohn-Sham 
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equations with electronic Hamiltonian ~,ut~e~ 

( - - ½ V  2 + Vext(r ) + ~(r)  + Vxe(r)) I]li(r ) -~- ~ i~l i (r  ) (7) 

The density is constructed from the eigenfunctions of this equation, 
n(r) = Y,i I~Oi(r)i 2, with i running over all occupied states. 

The one-electron wavefunctions ~O~ are usually expanded in a set of M basis 
functions ~b,,(r), and the set of partial differential equations (7) becomes a matrix 
eigenvalue problem with eigenvalues e~ and eigenvectors c~ (vector length M) 

M 

. = 1  

~, hk., Cj,m = ej Cj.k, (9) 
rtt 

Computationally, the solution of the eigenvalue problem (9) can become very 
demanding: (i) It is a "pseudo'-eigenvalue problem (the matrix elements 
hk,, = (q~k(r)l~el ]$m(r)) depend on the eigenvectors because the potential in Eq. (7) 
does) requiring iterative solution to self-consistency. (ii) The dimension of the 
matrix depends on how well the basis functions $,,(r) can represent the distribu- 
tion of electrons in the substance under investigation. Unfortunately, spatially 
well-localized "chemical" basis functions (e.g. orbitals of the Slater type) often 
lead to small matrix dimension M = 100-1000 but an awkward evaluation of the 
integrals hk,.. Functional forms for the qg,,(r) that offer easy evaluation of the matrix 
elements tend to require very large M = 103-106. 

4 Density functional theory and molecular dynamics 

The conception of a unified MD-DFT procedure by Car and Parrinello [4] marks 
one of the most important developments in computational electronic structure 
theory in decades. One very important ingredient of the MD-DF method is the use 
of a large (M = 103-106) plane wave basis set for the one-electron eigenfunctions 
(Eq. (10)) in conjunction with pseudo-potentials for the electron-ion interaction, 
iterative matrix eigenvalue algorithms, and the realization that FFT methods can 
be used to perform the necessary convolutions in reciprocal space as multipli- 
cations in real space [6, 9]. 

M 
~0j(r)= ~ c m e x p O G m r  ). (10) 

m=l 

In MD simulations it is crucial that all degrees of freedom move with EOM that are 
mutually compatible and conserve the sum of all kinetic and potential energy 
terms. Within the MD-DF scheme this leads to two coupled sets of EOM for the 
electronic wavefunctions ~i(t) and atomic positions Ri(t) 

6UoF~ 
#(k~(r, t) = 3~*(r, t) + ~' Aik(t)~'k(r, t), (11) 

k 

MI J~1 = - V~, UDVr ({RI (t)}). (12) 

These EOM are identical to those in Eq. (2) except that the electronic wave- 
functions evolve in time together with the atomic positions, and that now 
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the first-principles DFT expression UDrr appears as the potential energy of the 
particles. The ~,, get fictitious "masses" # and need to be orthogonalized in every 
time step with the Langrange multiplier method (Ask, second term in Eq. (11)). The 
same differential equation solvers can be used as in classical MD simulations 
(see Sect. 2). 

5 Applications 

5.1 Nanoscale phosphorus clusters 

At the boundary between chemistry and physics, microclusters represent a 
challenge to atomistic modeling. With the discovery of carbon fullerenes, the 
theoretical interest in these systems extended beyond quantum chemistry into the 
field of materials science. As can be expected on the basis of simple considerations, 
the cluster size plays a nontrivial role in determing their properties. With increasing 
number of atoms N, chemical, optical, dynamical and magnetic properties change 
in a nonmonotonic way, and only slowly approach those of bulk systems. First- 
principles electronic structure methods have been particularly useful to describe 
this evolution, and, for a large class of elements (mainly semiconductors and simple 
metals), they provide the only reliable model. 

We have concentrated on semiconductor clusters in our own work and we will 
discuss the results for phosphorus clusters PN representative for other applications. 
Bulk phosphorus displays a great structural variability characterized by a whole 
spectrum of chemical and physical properties. Already clusters with only a few 
atoms present a very large number of isomers, and finding the most stable points 
of the energy function U({RI(t)}) is a challenging optimization task. Simulated 
annealing, a method borrowed from statistical theory, can be used here very 
efficiently in conjunction with the MD-DF method. Studies for PN clusters with 
N = 2-11 show many unexpected features [9]. They provide valuable information 
on different subjects, like reactivity, nucleation, and the relation between different 
solid phases. Figure 1 shows examples of how complicated the cluster geometries 
can become. 

P~ clusters have been identified mass-spectrometrically (MS) with up to 
N = 7000 [10]. The tetrahedral P4 molecule dominates these spectra, and it is 
the predominant species in phosphorus vapor. It is also the building block of 
crystalline white phosphorus and the liquid at low temperatures (see Refso [11-13] 
and Sect. 5.2). The stability of P4 is somewhat surprising since, with an atomic 
valence electronic configuration of s2p 3, one would expect a purely p-bonded 
structure with three neighbors and all bond angles identical 90 ° to be the natural 
"island of stability". A Ps cube would be the perfect realization of this concept, but 
instead P8 has never been identified except as minor component in the MS with 
unknown structure. Although our simulated annealing studies [9] could not 
provide a clear answer why tetrahedral /'4 is so stable, they have exposed the 
comparison with cubic P8 as inappropriate: The cube is - by far (1.7 eV) - not the 
most stable structure of the eight-atom cluster. Instead, it decays over a small 
energetic barrier into a cradle-like structure (Fig. 1) that, like tetrahedral P4, 
possesses 60 ° angles. Our findings were subsequently confirmed by more tradi- 
tional quantum chemical calculations [14, 15] and are chemically plausible be- 
cause the same curious structural P8 element occurs in crystalline monoclinic 
"violet" phosphorus [16]. The P8 cradle structure is slightly more stable than two 
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Fig. 1. Structure of two P4 
isomers ("roof" and tetrahedron) 
and of the most stable geometries 
of Pa and Px 1 

tetrahedra in the LDA [9], a puzzling point [14] that was subsequently shown to 
be an artefact of this particular approximation to electron exchange and correla- 
tion and that can be remedied with the inclusion of gradient corrections [17]. 

Another advantage of duster calculations like ours with MD-DF is that the 
computational effort is relatively modest (and scaling only like N log N for a given 
size of the periodic box), and that a complete series of duster sizes N can be 
investigated to identify "growth patterns". For Pa.4 the structural basis is an 
equilateral triangle, for Ps - 7 it is a low-lying excited state of/)4 (the "roof structure, 
Fig. 1) to which one, two and three atoms, respectively, get attached. At N = 8, 
the growth scheme changes again, and Pg-H can best be described as 1-3 atoms 
attached to the most stable isomer of Ps [9]. 

Structural analogies with the isoelectronic hydrocarbon compounds (CH)N 
exist (e.g. tetrahedrane, prismane/benzvalene, cubane/cuneane), but the energetic 
ordering of the isomers can be different. Although no definitive statement can be 
made concerning (CH)s, all evidence suggests that cubane, like cubic Ps, is less 
stable than the corresponding cradle structure (cuneane), 

All low-energy isomers were calculated with the same general procedure: First 
we obtain the electronic ground state for some initial "guess" geometry (e.g. a cube 
of eight P atoms), then the duster is heated to temperatures in the range 
~ 500--10 000 K while the trajectory is being visually monitored, and then the 

"liquid" cluster .cooled to temperatures where no structural transformations occur 
any more (usually near 300 K). Since such a simulated annealing strategy is not 
guaranteed to locate the most stable geometry, the procedure is repeated a few 
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times starting from different initial structures. It is extremely important in systems 
with many local minima in the energy surface like PN to use an approach such as 
MD that can surmount energy barriers between different minima to obtain a quali- 
tatively correct picture of the system. "Chemical intuition" and pointwise zero- 
temperature calculations have failed to conceive structures anywhere near the 
correct one for, e.g. P6 and Ps. 

5.2 Polymerizing liquid molecular phosphorus 

We have also performed simulations of liquid phases of phosphorus [18]. If 
molecular white P is heated above its melting point (315 K), th, e resulting liquid 
also comprises tetrahedral P,~ molecules with bond length 2.210 A [12]. In spite of 
the compact, almost spherical shape of /4,  neutron diffraction studies of.l-P show 
[12] that spatial correlations between the molecules extend farther ( ~ 20 A) than in 
any other known liquid. Liquid phosphorus turns red if heated above 473 K (boiling 
point is 553 K) and red amorphous phosphorus (a-P) precipitates if the reaction is 
allowed to proceed. Most industrial processes for converting the poisonous and 
combustible white P to the more stable a-P operate in the vicinity of 500-600 K and 
require several days for completion. Little is known about the mechanism of this 
reaction, and experimental studies for its characterization seem to be missing. 

The polymeric red a-P forms with high molecular weights also contain pre- 
dominantly threefold coordinoated atoms [16]. The average values of the bond 
lengths and angles are 2.24 A and 103 °, respectively, and red P melts (under 
pressure) at ~ 875 K to form an almost colorless liquid similar in appearance to 
molten white P [11]. It is not likely that these two liquids are indeed identical [11] 
and molecular and polymeric components might coexist. Phosphorus differs from 
its neighbor arsenic in that the molecular--, polymeric transition occurs in the 
melt. In As, the polymerization occurs in the solid phase at temperatures of less 
than 78 K. The driving force behind the transition is in both cases the higher 
thermodynamic stability of polymeric network strutures over molecular forms that 
is well known from crystalline modifications [11, 13]. 

In our study (see also Ref. [18]), we seek to analyze the structures of the 
molecular and polymeric forms, identify the nature of the medium and long-range 
order in the molecular liquid, and identify the crucial steps in the polymerization 
mechanism. While traditional methods of quantum chemistry lead to reliable 
energies, they are restricted to relatively few atoms and neglect the effects of 
neighboring ("solvent") molecules, and of nonzero temperature, i.e. the fact that 
chemical reactions are driven by free energy, not enthalpy alone. These restrictions 
do not apply to the M D - D F  method we use, although its limitations must not be 
overlooked. 

As in our previous work on a-P [16], we use a constant-volume cell with lattice 
constant 27.11 a.u. We therefore expect a good description of local order up to 
interatomic distances of about 13.5 a.u., i.e. a central tetrahedron in white P to- 
gether with a complete shell of neighboring molecules. The density was adjusted to 
that of white P at its melting point (p = 1.81 gcm-  3) by filling the available volume 
with 104 P atoms, initially in the form of 26 P4 tetrahedra. The initial geometry was 
then heated to a temperature just below where a breakup of the tetrahedra became 
observable on the time scale of our simulations ( ~ 3000 K) to destroy any memory 
of the initial geometry of the tetrahedra, and then cooled to and equilibrated at 
T = 500 K. A subsequent MD run (5000 steps, At = 9 a.u. in all calculations) 
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corresponding to a microcanonical ensemble provided the basis for the structural 
analysis of the molecular liquid. Performing the simulation well above the melting 
point allows us to accumulate better statistics for all quantities sought because 
phosphorus is very viscous at the melting point. To verify that the sample is in 
a diffusive liquid state, we have computed the diffusion coefficient D to be 
~ 5 x 10 -4 cm 2 s-  1. This is within the range of typical liquids. 

The only experimental structure study of liquid molecular phosphorus we can 
compare with are neutron scattering data near the melting point [12]. In Fig. 2 
(top) we show the radial distribution functions derived from both our simulations 
and the scattering data side by side. The agreement is very good up to interatomic 
distances of about 11 a.u. considering that (i) the temperatures between theoretical 
and experimental data differ by about 200 K and (ii) no parameter fitting is 
involved in our computational procedure. The most likely first neighbor distance 
(i.e. the interatomic separation within the tetrahedral molecules) is slightly larger in 
our simulations (4.26 a.u.) than in the experimental data (4.18 a.u.), a known effect 
of the pseudo-potential approximation we use ("s-nonlocality") [16]. The first- 
neighbor shell defined by the location of the first minimum in J(r) at 5.0 a.u. 
contains 3.0 atoms, reflecting intact tetrahedra with a small proportion of colli- 
sion induced 4-fold coordinated defect atoms ( ~ 2%; see text below). The overall 
shape of the J(r) function with a sharp first peak of high intensity dominating 
over a broader, low-intensity, second neighbor region ( ~  5-9 a.u.) is very well 
reproduced. The third peak near 10.5 a.u. lies at shorter distances than indicated by 
the experimental data, but the cell boundary is approached and finite-size effects 
start to play a role. The closest distance of approach of atoms in different molecules 
in our simulation at 500 K is only ,,~ 5.2 a.u., substantially less than the sum of two 
phosphorus van-der-Waals radii (7.2 a.u. [11]), and this "soft core" behavior of the 
tetrahedra is a crucial element in the polymerization process (see below). 

10 
y "~°~ -- 

0 
1 0  - , . . . .  {! . , '  

f~  Lr I s -  ii. i &  / ,  -I 

0 2 4 6 8 lO 12 14 
r (a.u.) 

Fig. 2. Radial distribution functions J(r) = 4z~r2p(r) in molecular liquid phosphorus (top, solid line: 
simulation, dashed line: exp.), in the polymeric liquid (bottom~ solid line: simulation), and in amorphous 
phosphorus (bottom, dashed line: exp.) in comparison 
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Scattering experiments offer little information about the nature of intermediate 
and long-range order. In molecular liquid P we define the former as ordering 
phenomena involving neighboring molecules and the latter as those extending 
beyond one shell of neighboring molecules and therefore inaccessible in our current 
simulations of l-P. An analysis of the intermediate range order alone, however, 
has yielded useful insights into what might be the basis of the long-distance 
correlations in this liquid: 

Integrating J(r) (Fig. 2) shows that the second neighbor peak reaching from 5.0 
to 8.8 a.u. contains 10 atoms, and the third peak extending from 8.8 to 12.7 am. 
another ~ 32 atoms. This approximate 1 : 3 ratio is compatible with a model [12] 
where one atom is positioned in the cavity formed by three atoms from other 
molecules. This model was originally proposed for other liquids of tetrahedral 
molecules like CC14. Analysing, in addition, more complex distribution functions 
of interatomic distances between neighboring molecules [18] we were able to 
identify a curious "face-to-face" orientational ordering as the preferred alignment 
of tetrahedra in near contact (see Fig. 3). Substantial distortions from this align- 
ment are locally possible due to rotational motions of the molecules relative to each 
other at finite temperature, but radically different orientations like "tip-to-tip" or 
"tip-to-face" are clearly disadvantageous. At 500 K, we were unable to determine 
a preference of "staggered" over "eclipsed" configurations of the face-to-face 
alignment, and that puts an upper bound on the rotational energy barrier. Clearly, 
the picture of P4 as a nearly spherical object is inappropriate, and substantial 
chemical interactions act between neighboring molecules in the liquid. 

Modeling the polymerization of white P to liquid red P is an ambitious 
endeavor because the reaction is a very slow process requiring typically several 
days at temperatures between 500 and 600 K. The time scales that are accessible to 
MD simulations are orders of magnitude shorter, and we have used temperatures 
much higher than under experimental conditions to accelerate the process. That, in 
turn, can change the reaction pathways accessible to the system, and the details of 

\ 
\ \  

\ 

\ 

Fig. 3. Schematic drawing of the preferred relative orientation of two neighboring P4 molecules in 
molecular l-P ("face-to-face") 



246 D. Hohl 

the mechanism observed [18] must be interpreted with some caution. We still 
expect that the main features of the polymerization process in phosphorus will be 
described much more faithfully than parametrized interatomic potentials could do. 

Obviously, in the course of the reaction, the individual molecules have to break 
up and then recombine to form a 3D-network structure similar to that of the 
amorphous substance [16,1. In our simulation the disintegration of P4 molecules 
sets in at T ~ 3000 K, and no tetrahedron remains intact after 3300 time steps at 
3500 K. The mechanism for the breakup is clearly thermally induced collisions 
between the tetrahedra. Increasing the temperature in a few 1000 timesteps con- 
tinuously to this point increases primarily the number of 4-fold coordination 
defects: The molecules bounce into each other but the kinetic energy is not high 
enough to break them up on the time scale of our observation; 4-fold defects are 
locally stable [161, but their formation proceeds over an energy barrier. Once this 
energy barrier can be overcome sufficiently often (i.e. here beyond 3000 K) chemical 
bonds form between different molecules. 4-fold defects, however, are apparently 
destabilizing the tetrahedral molecules. We observe rapid structural deformations 
from the tetrahedral to the "roof" isomer (Fig. 1) in those tetrahedra that contain 
a fourfold defect, a process breaking one bond in the molecules much in the fashion 
proposed by Pauling and Simonetta [19,1 and generating a large proportion of 
2-fold coordinated atoms. 

With a sufficient number of reactive twofold coordination defects the sample 
will polymerize rapidly and isotropically at all temperatures between 3500 and 

Fig. 4. Snapshot of a typical structure for polymeric liquid phosphorus at T = 1500 K. Atoms less than 
5.0 a.u. apart are connected by sticks symbolizing bonds. Bonds reaching into the neighboring unit cells 
are not  shown so that atoms near the cell boundaries (edges of the figure) appear artificially undercoor- 
dinated 
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1500 K according to a variety of tests we have performed [18]. Continuing after 
3300 steps at 3500 K with 27000 time steps at 1500 K (6 ps) the liquid becomes 
almost entirely polymeric in nature (two tetrahedra reform). A snapshot of a typical 
configuration (Fig. 4) shows that the final disordered structure is reminiscent ofthat 
of a-P [16]. One can distinguish interlinked clusters of atoms with shapes resem- 
bling those of stable PN clusters in vacuum, the basic structural model we have 
developed for a-P [16]. 

An analysis of distribution functions with which we had characterized a-P 
shows close similarity between polymeric 1-P and a-P as well [18]. One example 
is the radial distribution function J(r). Although we are unaware of any scatter- 
ing experiments on the polymeric liquid, a comparison between our data for 
this liquid and experimental data for a-P will be illuminating until such experi- 
mental data become available. Naturally, the peaks in the liquid are much broader 
than in the amorphous substance at room temperature (Fig. 2, bottom). The 
most characteristic differences between the molecular and polymeric substances 
(Fig. 2, top and bottom, respectively) are the substantial increase in the intensity 
of the second peak relative to the first, and the shift of its center of mass to 
lower r. Both are well reproduced by our simulation and we are confident 
that polymeric liquid phosphorus is indeed structurally very closely related to 
amorphous phosphorus. 

6 Conclusions 

The scheme just described provides a powerful and reliable framework to simulate 
a large class of systems. It can be efficiently applied to locate the optimal structures 
of small molecular clusters (P2-11) where a method that can overcome local 
minima in complex energy surfaces is essential to obtain qualitatively the correct 
results. The scheme is quite general conceptually, and it can also describe complex 
ordering phenomena and phase transitions in chemically bonded liquids and 
disordered solids. As an example of the latter, we have presented a study of liquid 
phosphorus in its molecular and polymeric states, and the mechanisms 
likely involved in their thermal transformation. The most likely pathway 
involves an opening motion of the P4 tetrahedra first proposed 40 years ago by 
Pauling and Simonetta [19]. In studies like this one, the inclusion of finite 
temperature and the "solvent" are very important and cluster calculations based on 
single molecules in vacuum at zero temperature are not likely to capture the 
essential processes. 

Limitations remain on the size of the systems we can study (100~00 atoms), on 
the length of the simulation (ps range), and several chemical elements (most notably 
transition metals and the elements in the first two rows of the periodic table) 
are still problematic. These limitations, however, are not fundamental but com- 
putational in nature. Algorithm and method development on one side (e.g. new 
pseudopotentials, basis sets with chemically motivated functional forms [20], 
linearly scaling methods [21]) and - to a lesser extent - the maturing massively 
parallel supercomputer technology on the other will advance the field rapidly. The 
ultimate goal is the capability to perform dynamical calculations for up to 1000 
atoms of any element in the periodic table. 

Acknowledgements. The example applications mentioned here were performed in collaboration with 
R.O. Jones. I thank P. Ballone for helpful suggestions on an earlier version of this manuscript° 
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